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UNIT-I 

 

Mathematical Logic 

 

Statements and notations: 

A proposition or statement is a declarative sentence that is either true or false (but not both). 

For instance, the following are propositions: 

 Paris is in France< (true) 

 London is in Denmark< (false) 

 2 < 4 < (true) 

 4 = 7< (false) 

However the following are not propositions: 

 what is your name?< (this is a question) 

 do your homework< (this is a command) 

 this sentence is false< (neither true nor false) 

 x is an even number< (it depends on what x represents) 

 Socrates< (it is not even a sentence) 

The truth or falsehood of a proposition is called its truth value. 

Connectives: 

Connectives are used for making compound propositions. Generally used five connectives are – 

 OR (V) 

 AND (K) 

 Negation/ NOT (¬) 
 Implication / if-then (→) 

 If and only if ( ¤ ). 

 
Well formed formulas (wff): 

 

The strings that produce a proposition when their symbols are interpreted must follow the 

rules given below, and they are called wffs(well-formed formulas) of the first order 

predicate logic. 
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A predicate name followed by a list of variables such as P(x, y), where P is 
predicate name, and x and y are variables, is called an atomic formula. 

 

 

 

 
A well formed formula of predicate calculus is obtained by using the following rules. 

1. An atomic formula is a wff. 

2. If A is a wff, then ¬A is also a wff. 

3. If A and B are wffs, then (A V B), (A ٨ B), (A → B) and (A ¤ B) are wffs. 

 

4. If A is a wff and x is any variable, then (x)A and ($x)A are wffs. 

5. Only those formulas obtained by using (1) to (4) are wffs. 

 

Wffs are constructed using the following rules: 

 

1. True and False are wffs. 

 

2. Each propositional constant (i.e. specific proposition), and each propositional 

variable (i.e. a variable representing propositions) are wffs. 

3. Each atomic formula (i.e. a specific predicate with variables) is a wff. 

4. If A, B, and C are wffs, then so are A, (A   B), (A B), (A B), and (A B). 
 

5. If x is a variable (representing objects of the universe of discourse), and A is a 

wff, then so are  x A and   x A . 

 

For example, "The capital of Virginia is Richmond." is a specific proposition. Hence it is 

a wff by Rule 2. 

 

Let B be a predicate name representing "being blue" and let x be a variable. Then B(x) is 

an atomic formula meaning "x is blue". Thus it is a wff by Rule 3. above. 

 

By applying Rule 5. to B(x),  xB(x) is a wff and so is  xB(x). 

 

Then by applying Rule 4. to them  x B(x)   x B(x) is seen to be a wff. Similarly if R 

is a predicate name representing "being round". Then R(x) is an atomic formula. Hence it 

is a wff. 

 

By applying Rule 4 to B(x) and  R(x), a wff  B(x)  R(x) is obtained. 

 

To express the fact that Tom is taller than John, we can use the atomic formula 

taller(Tom, John), which is a wff. This wff can also be part of some compound statement 

such as taller(Tom, John)   taller(John, Tom), which is also a wff. If x is a variable 

representing   people   in   the   world,   then   taller(x,Tom),   x   taller(x,Tom),       x 

taller(x,Tom),  x y taller(x,y) are all wffs among others. However, taller(     x,John) 

and taller(Tom  Mary, Jim), for example, are NOT wffs. 
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Truth Tables: 

 

Logical identity 

Logical identity is an operation on one logical value, typically the value of a 

proposition that produces a value of true if its operand is true and a value of false if 

its operand is false. 

 

The truth table for the logical identity operator is as follows: 

 

 

 

 

 

 

 

 

 
Logical negation 

Logical negation is an operation on one logical value, typically the value of a 

proposition that produces a value of true if its operand is false and a value of false 

if its operand is true. 

The truth table for NOT p (also written as ¬p or ~p) is as follows: 

 

 

 

 

 

 

 

 

 

Logical conjunction: 

Logical conjunction is an operation on two logical values, typically the values of two 

propositions, that produces a value of true if both of its operands are true. 

The truth table for p AND q (also written as p K q, p & q, or p q) is as follows: 

 
If both p and q are true, then the conjunction p K q is true. For all other assignments 

of logical values to p and to q the conjunction p K q is false. It can also be said that 

if p, then p K q is q, otherwise p K q is p. 
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Logical Negation 
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Logical disjunction: 

Logical disjunction is an operation on two logical values, typically the values of two 

propositions, that produces a value of true if at least one of its operands is true.The truth 

table for p OR q (also written as p V q, p || q, or p + q) is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 
Logical implication: 

 

Logical implication and the material conditional are both associated with an operation on 

two logical values, typically the values of two propositions, that produces a value of false 

just in the singular case the first operand is true and the second operand is false. 
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Logical Disjunction 
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Logical Implication 

 
p 

 
q 

 
p → q 
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The truth table associated with the material conditional if p then q (symbolized as p → q) 

and the logical implication p implies q (symbolized as p ‹ q) is as shown above. 

 
Logical equality: 

Logical equality (also known as biconditional) is an operation on two logical values, 

typically the values of two propositions, that produces a value of true if both operands are 

false or both operands are true.The truth table for p XNOR q (also written as p ↔ q ,p = 

q, or p ≡ q) is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 
 

Exclusive disjunction: 

 

Exclusive disjunction is an operation on two logical values, typically the values of 

two propositions, that produces a value of true if one but not both of its operands is 

true.The truth table for p XOR q (also written as p Ⓧ q, or p ≠ q) is as follows: 

 

 

 

 

 

 

 

 

 

 

 
Logical NAND: 

The logical NAND is an operation on two logical values, typically the values of two 

propositions, that produces a value of false if both of its operands are true. In other words, 

it produces a value of true if at least one of its operands is false.The truth table for p 

NAND q (also written as p ↑ q or p | q) is as follows: 
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Exclusive Disjunction 
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In the case of logical NAND, it is clearly expressible as a compound of NOT and AND. 

The negation of a conjunction: ¬(p K q), and the disjunction of negations: (¬p) V (¬q) is 

same. 

 
Logical NOR 

The logical NOR is an operation on two logical values, typically the values of two 

propositions, that produces a value of true if both of its operands are false. In other words, it 

produces a value of false if at least one of its operands is true. ↓ is also known as the Peirce 

arrow after its inventor, Charles Sanders Peirce, and is a Sole sufficient operator. 

 

The truth table for p NOR q (also written as p ↓ q or p T q) is as follows: 

 

 

 

 

 

 

 

 

 

 

 
The negation of a disjunction ¬(p V q), and the conjunction of negations (¬p) K (¬q) is same. 

Inspection of the tabular derivations for NAND and NOR, under each assignment of 

logical values to the functional arguments p and q, produces the identical patterns of 

functional values for ¬(p K q) as for (¬p) V (¬q), and for ¬(p V q) as for (¬p) K (¬q). Thus 
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Logical NAND 
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Logical NOR 
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the first and second expressions in each pair are logically equivalent, and may be 
 

 

substituted for each other in all contexts that pertain solely to their logical values. 

This equivalence is one of De Morgan's laws. 

The truth value of a compound proposition depends only on the value of its components. 

F for false and T for true summarizes the meaning of the connectives in following way: 

 

 

 

 

 

 

 

 

 

 

 

Note that V represents a non-exclusive or, i.e., p V q is true when any ofp, q is true and 

also when both are true. On the other hand Ⓧ represents an exclusive or, i.e., p Ⓧ q is 

true only when exactly one of p and q is true. 

 

Tautology, Contradiction, Contingency: 

A proposition is said to be a tautology if its truth value is T for any assignment of truth 

values to its components. Example: The proposition p V ¬p is a tautology. 

A proposition is said to be a contradiction if its truth value is F for any assignment of 

truth values to its components. Example: The proposition p K ¬p is a contradiction. 

A proposition that is neither a tautology nor a contradiction is called a contingency. 

 

 

 

 

 

 
Equivalence Implication: 

 

We say that the statements r and s are logically equivalent if their truth tables are 

identical. 
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For example the truth table is:- 

 

shows is equivalent to . It is easily shown that the statements r 

and s are equivalent if and only if is a tautology. 

 

Normal forms: 

Let A(P1, P2, P3, …, Pn) be a statement formula where P1, P2, P3, …, Pn are the atomic 

variables. If A has truth value T for all possible assignments of the truth values to the 

variables P1, P2, P3, …, Pn , then A is said to be a tautology. If A has truth value F, then 

A is said to be identically false or a contradiction. 

 
Disjunctive Normal Forms 

 

A product of the variables and their negations in a formula is called an elementary 

product. A sum of the variables and their negations is called an elementary sum. That is, a 

sum of elementary products is called a disjunctive normal form of the given formula. 

Example: 

(1) 

(2) 

(3) 

(4) 

(5) 

 
Principal Disjunctive Normal Form (PDNF) 

 

Let us assume A nd B be two statement variables. All possible formulas by sing conjunction are 

given as follows. The total number of formulas for two variables A and B are 22 formulas. They are 

A Ù , A Ù ùB, 

ùA Ù B and ù A ù B. 

 

These are called interms or Boolean co junctions of A and B. The minterms (2n terms) are 

denoted by M0, 1, … ,M2n-1. 

 

A formula equivalent to a given formula onsisting of the disjunction of minterms only is 

called PDNF of the given formula. 
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Conjunctive Normal Forms 

A formula which is equivalent to a given formula and which consists of a 

product of elementary sums is called a conjunctive normal form of a given 

formula. 

 

Example: 

(1) 

(2) 

(3) 

  (4) 

 

 

 
Principal Conjunctive Normal Forms (PCNF) 

 

The duals of minterms are called maxterms. For a given number of variables the maxterm consists of 

disjunctions in which each variable or its negation, but not both, appears only once. 

 

For a given formula, an equivalent formula consisting of conjunctions of maxterms only is known as its 

principal conjunctive normal form. This is also called the product of sums canonical form. 

 

QUANTIFIERS 

 

The variable of predicates is quantified by quantifiers. There are two types of quantifier in predicate 

logic − Universal Quantifier and Existential Quantifier. 

 

Universal Quantifier 

 

Universal quantifier states that the statements within its scope are true for every value of the specific 

variable. It is denoted by the symbol 6. 

 

6x P(x) is read as for every value of x, P(x) is true. 

 

Example − "Man is mortal" can be transformed into the propositional form 6x P(x) where P(x) is the 

predicate which denotes x is mortal and the universe of discourse is all men. 

 

Existential Quantifier 

 

Existential quantifier states that the statements within its scope are true for some values of the specific 

variable. It is denoted by the symbol E. 

 

Ex P(x) is read as for some values of x, P(x) is true. 
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Example − "Some people are dishonest" can be transformed into the propositional form Ex P(x) 

where P(x) is the predicate which denotes x is dishonest and the universe of discourse is some people. 

 

Nested Quantifiers 

 

If we use a quantifier that appears within the scope of another quantifier, it is called nested quantifier. 

 

Example 

 

< 6a Eb P (x, y) where P (a, b) denotes a + b = 0 

< 6a 6b 6c P (a, b, c) where P (a, b) denotes a + (b+c) = (a+b) +c 

 

Note − 6a Eb P (x, y) ≠ Ea 6b P (x, y) 

 
Predicates 

 

Predicative logic: 
 

A  predicate  or  propositional  function  is  a  statement  containing  variables.  For  instance  ―x 

+ 2 = 7< ,  ―X  is  American< ,  ―x  <  y< ,  ―p  is  a  prime  number<  are  predicates.  The  truth 

value  of  hetpredicate depends on the value assigned to its variables. For instance if we replace 

x with 1 in the predicate ―x + 2 = 7<  we obtain ―1 + 2 = 7< , which is false, but if we replace 

it with 5 we get ―5 

+ 2 = 7< , which is true. 

 
We represent a predicate by a letter followed by the variables enclosed between parenthesis: 

P (x), Q(x, y), etc. An example for P (x) is a value of x for which P (x) is true. A 

counterexample is a value of x for which P (x) is false. So, 5 is an example for ―x + 2 = 7< , 

while 1 is a counterexample. 

 
Each variable in a predicate is assumed to belong to a universe(or domain) of discourse, for 

instance in the predicate ―n is an odd integer<  ’n’ represents an integer, so the universe of 

discourse  of  n  is  the  set  of  all  integers.  In  ―X  is  American<  we  may  assume  that  X  is  a 

human being, so in this case the universe of discourse is the set of all human beings. 

 

 
Free & Bound variables: 

 

Have a look at the following formula: 

 
 

 

The first occurrence of x is free, whereas the second and third occurrences of x are bound, namely by 

the first occurrence of the quantifier . The first and second occurrences of the variable y are also 
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bound, namely by the second occurrence of the quantifier . 
 

 

 

 

 

 

Informally, the concept of a bound variable can be explained as follows: Recall that quantifications  

are generally of the form: 
 
 

 

 

or 
 
 

 

 

where may be any variable. Generally, all occurences of this variable within the quantification are 

bound. But we have to distinguish two cases. Look at the following formula to see why: 

 
 

 

1.  may  occur  within  another,  embedded,  quantification         or   ,  such  as  the    in in our 

example. Then we say that it is bound by the quantifier of this embedded quantification (and so on, if 

there's another embedded quantification over within ). 

2. Otherwise, we say that it is bound by the top-level quantifier (like all other occurences of in our 

example). 

 

Here's a full formal simultaneous definition of free and bound: 

 

1. Any occurrence of any variable is free in any atomic formula. 

2. No occurrence of any variable is bound in any atomic formula. 

3. If an occurrence of any variable is free in or in , then that same occurrence is  free in , 

, , and . 

4. If an occurrence of any variable is bound in or in , then that same occurrence is bound in 

, , , . Moreover, that same occurrence is bound in and as well, for any  

choice of variable y. 

5. In any formula of the form or (where y can be any variable at all in this case) the occurrence 

of y that immediately follows the initial quantifier symbol is bound. 

6. If an occurrence of a variable x is free in , then that same occurrence is  free in  and , for any 

variable y distinct from x. On the other hand, all occurrences of x that are free in , are bound in 

and in . 

 

If a formula contains no occurrences of free variables we call it a sentence . 

 

Rules of inference: 

The two rules of inference are called rules P and T. 

 

Rule P: A premise may be introduced at any point in the derivation. 
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Rule T: A formula S may be introduced in a derivation if s is tautologically implied by 

any one or more of the preceding formulas in the derivation. 

 

Before proceeding the actual process of derivation, some important list of implications and 

equivalences are given in the following tables: 

 
Implications 

 

I1  P٨Q =>P } Simplification 

I2 PQ٨ =>Q 

I3  P=>PVQ } Addition 

I4 Q =>PVQ 

I5 7P => P→ Q 

I6  Q => P→ Q 

I7 7(P→Q) =>P 

I8 7(P → Q) >Q 

I9 P, Q => P ٨ Q 

I10   7P, PVQ => Q ( disjunctive 

syllogism) 

I11   P, P→ Q => Q ( modus ponens ) 

I12   7Q, P → Q => 7P (modus tollens ) 

I13   P → Q, Q → R => P → R ( hypothetical 

syllogism) 

I14 P V Q, P → Q, Q → R => R (dilemma) 

 
 

Equivalences 

E1 77P <=>P 

E2 P ٨ Q <=> Q ٨ P } Commutative laws 

E3 P V Q <=> Q V P 

E4 (P ٨ Q) ٨ R <=> P ٨ (Q ٨ R) } Associative laws 

E5 (P V Q) V R <=> PV (Q V R) 

E6 P ٨ (Q V R) <=> (P ٨ Q) V (P ٨ R)  } Distributive 

laws 

E7 PV (Q ٨ R) <=> (P V Q) ٨ (PVR) 

E8 7(P ٨ Q) <=> 7P V7Q 

E9   7(P V Q)  <=>7P ٨ 7Q } De Morgan’s laws 
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E10 P V P <=> P 
E11 P ٨ P <=> P 

 

 

 

 

 

 

 
Example 1.Show that R is logically derived from P → Q, Q → R, and P 

 

Solution. {1} (1)  P → Q Rule P 

{2} (2) P Rule P 

{1, 2} (3) Q Rule (1), (2) and I11 

{4} (4)  Q → R Rule P 

{1, 2, 4} (5) R Rule (3), (4) and I11. 

 
Example 2.Show that S V R tautologically implied by ( P V Q) ٨ ( P → R) ٨ ( Q → S ). 

 
 

Solution . {1} (1) P V Q Rule P 

{1} (2) 7P → Q T, (1), E1 and E16 

{3} (3) Q → S P 

{1, 3} (4)   7P → S T, (2), (3), and I13 

{1, 3} (5)   7S → P T, (4), E13 and E1 

{6} (6) P → R P 

{1, 3, 6} (7) 7S → R T, (5), (6), and I13 

{1, 3, 6) (8) S V R T, (7), E16 and E1 

 
 

Example 3. Show that 7Q, P→ Q => 7P 

 
Solution . {1} (1)  P → Q Rule P 

{1} (2) 7P → 7Q T, and E 18 

{3} (3) 7Q P 

{1, 3} (4) 7P T, (2), (3), and I11 . 

 

Example 4 .Prove that R ٨ ( P V Q ) is a valid conclusion from the 

premises PVQ , Q → R, P → M and 7M. 

 
 

Solution . {1} (1)  P → M P 
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{2} (2) 7M P 

{1, 2} (3) 7P T, (1), (2), and I12 

{4} (4)  P V Q P 

{1, 2 , 4} (5) Q T, (3), (4), and I10. 

{6} (6)  Q → R P 

{1, 2, 4, 6} (7)  R T, (5), (6) and I11 

{1, 2, 4, 6} (8)  R ٨ (PVQ) T, (4), (7), and I9. 

 

 

There is a third inference rule, known as rule CP or rule of conditional proof. 

Rule CP: If we can derives s from R and a set of premises , then we can derive R → 

S from the set of premises alone. 

 

Note. 1. Rule CP follows from the equivalence E10 which 

states that ( P ٨ R ) → S óP → (R → S). 

2. Let P denote the conjunction of the set of premises and let R be any 

formula The above equivalence states that if R is included as an 

additional premise and 

S is derived from P ٨ R then R → S can be derived from the premises P alone. 

 

3. Rule CP is also called the deduction theorem and is generally 

used if the conclusion is of the form R → S. In such cases, R 

is taken as an additional premise and S is derived from the 

given premises and R. 

 
Example 5 .Show that R → S can be derived from the 

premises P → (Q → S), 7R V P , and Q. 

 

Solution. {1} (1) 7R V P P 

{2} (2)  R P, assumed premise 

{1, 2} (3)P T, (1), (2), and I10 

{4} (4)P → (Q → S) P 

{1, 2, 4} (5)Q → S T, (3), (4), and I11 

{6} (6) Q P 

{1, 2, 4, 6} (7) S T, (5), (6), and I11 

{1, 4, 6} (8)R → S CP. 
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Example 6.Show that P → S can be derived from the premises, 

7P V Q, 7Q V R, and R → S . 

 

Solution. 

{1} (1)  7P V Q P 

{2} (2)  P P, assumed premise 

{1, 2} (3)  Q T, (1), (2) and I11 

{4} (4)   7Q V R P 

{1, 2, 4} (5)  R T, (3), (4) and I11 

{6} (6)   R → S P 

{1, 2, 4, 6} (7)  S T, (5), (6) and I11 

{2, 7} (8)   P → S CP 

 
 

Example 7. < If there was a ball game , then traveling was difficult. If they arrived on 

time, then traveling was not difficult. They arrived on time. Therefore, there was no ball 

game< . Show that these statements constitute a valid argument. 

 

Solution. Let P: There was a ball game 

Q: Traveling was 

difficult. R: They 

arrived on time. 

 

 

 

 

 

 
Given premises are: P → Q, R → 7Q and R conclusion is: 7P 

 
 

{1} (1) P → Q P 

{2} (2) R → 7Q P 

{3} (3) R P 

{2, 3} (4) 7Q T, (2), (3), and I11 

{1, 2, 3} (5) 7P T, (2), (4) and I12 
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Consistency of premises: 

Consistency 

 

A set of formulas H1, H2, …, Hm is said to be consistent if their conjunction has 

the truth value T for some assignment of the truth values to be atomic appearing 

in H1, H2, …, Hm. 

Inconsistency 

 

If for every assignment of the truth values to the atomic variables, at least one of the 

formulas H1, H2, … Hm is false, so that their conjunction is identically false, then the 

formulas 

H1, H2, …, Hm are called inconsistent. 

 
 

A set of formulas H1, H2, …, Hm is inconsistent, if their conjunction 

implies a contradiction, that is H1٨ H2٨ … ٨ Hm => R ٨ 7R 

 
Where R is any formula. Note that R ٨ 7R is a contradiction and it is necessary 

and sufficient that H1, H2, …,Hm are inconsistent the formula. 

 
Indirect method of proof 

 

In order to show that a conclusion C follows logically from the premises H1, 

H2,…, Hm, we assume that C is false and consider 7C as an additional premise. If the 

new set of premises is inconsistent, so that they imply a contradiction, then the 

assumption that 7C is true does not hold simultaneously with H1٨ H2٨ ….. ٨ Hm being 

true. Therefore, C is true whenever H1٨ H2٨ 

..… ٨ Hm is true. Thus, C follows logically from the premises H1, H2 

….., Hm. 

Example 8 Show that 7(P ٨ Q) follows from 7P٨ 7Q. 

Solution. 

 

We introduce 77 (P٨ Q) as an additional premise and show that this additional premise 

leads to a contradiction. 

{1} (1) 77(P٨ Q) P assumed premise 

{1} (2) P٨ Q T, (1) and E1 

{1} (3) P T, (2) and I1 

{1} {4) 7P٨7Q P 

{4} (5) 7P T, (4) and I1 

{1, 4} (6) P٨ 7P T, (3), (5) and I9 

 
Here (6) P٨ 7P is a contradiction. Thus {1, 4} viz. 77(P٨ Q) and 
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7P٨ 7Q leads to a contradiction P ٨ 7P. 
 

 

 

 
Example 9Show that the following premises are inconsistent. 

1. If Jack misses many classes through illness, then he fails high school. 

2. If Jack fails high school, then he is uneducated. 

3. If Jack reads a lot of books, then he is not uneducated. 

4. Jack misses many classes through illness and reads a lot of books. 

 

Solution. 

P: Jack misses 

many classes. Q: 

Jack fails high 

school. 

R: Jack reads a lot 

of books. S: Jack is 

uneducated. 

The premises are P→ Q, Q → S, R→ 7S and P٨ R 

{1} (1) P→Q P 

{2} (2) Q→ S P 

{1, 2} (3) P → S T, (1), (2) and I13 

{4} (4) R→ 7S P 

{4} (5)   S → 7R T, (4), and E18 

{1, 2, 4} (6) P→7R T, (3), (5) and I13 

{1, 2, 4} (7) 7PV7R T, (6) and E16 

{1, 2, 4} (8) 7(P٨R) T, (7) and E8 

 

{9} (9)P٨ R P 

{1, 2, 4, 9)   (10) (P٨ R) ٨ 7(P٨ R) T, (8), (9) and I9 
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Hyp 

R 

 

 

 
The rules above can be summed up in the following table. The "Tautology" 

column shows how to interpret the notation of a given rule. 

 

Rule of inference Tautology Name 

 

  
Addit 

ion 

Simp 

lificat 

ion 

 
 

Conjunction 

 

 

 
Modus ponens 

 

 

 
Modus tollens 

 

 

 
othetical syllogism 

 

 

 
Disjunctive syllogism 

 

 

 

esolution 
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Example 1 
 

 

Let us consider the following assumptions: "If it rains today, then we will not go on a canoe 

today. If we do not go on a canoe trip today, then we will go on a canoe trip tomorrow. Therefore 

(Mathematical symbol for "therefore" is ), if it rains today, we will go on a  canoe  trip 

tomorrow. To make use of the rules of inference in the above table we let p be the proposition "If 

it rains today", q be " We will not go on a canoe today" and let r be "We will go on a canoe trip 

tomorrow". Then this argument is of the form: 
 

 

 
Example 2 

Let us consider a more complex set of assumptions: "It is not sunny today and it is colder than 

yesterday". "We will go swimming only if it is sunny", "If we do not go swimming, then we will 

have a barbecue", and "If we will have a barbecue, then we will be home by sunset" lead to the 

conclusion "We will be home before sunset." Proof by rules of inference: Let p be the 

proposition "It is sunny this today", q the proposition "It is colder than yesterday", r the 

proposition "We will go swimming", s the proposition "We will have a barbecue", and t the 

proposition "We will be home by sunset". Then the hypotheses become 

and  . Using our intuition we conjecture that the conclusion 

might be t. Using the Rules of Inference table we can proof the conjecture easily: 

 

Step Reason 
 

1.      Hypothesis 

 

2.              Simplification using Step 1 

 
 

3. Hypothesis 

 
4. Modus tollens using Step 2 and 

3 

5. Hypothesis 

 

6. 
s 

Modus ponens using Step 4 and 

5 

7. Hypothesis 
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8.  t  
Modus ponens using Step 6 and 

        7 

 

 

 

Proof of contradiction: 

 

The "Proof by Contradiction" is also known as reductio ad absurdum, which is probably 

Latin for "reduce it to something absurd". 

 

Here's the idea: 

1. Assume that a given proposition is untrue. 

2. Based on that assumption reach two conclusions that contradict each other. 

 
 

This is based on a classical formal logic construction known as Modus Tollens: If P implies Q 

and Q is false, then P is false. In this case, Q is a proposition of the form (R and not R) which is 

always false. P is the negation of the fact that we are trying to prove and if the negation is not 

true then the original proposition must have been true. If computers are not "not stupid" then  

they are stupid. (I hear that "stupid computer!" phrase a lot around here.) 

 

Example: 

Lets prove that there is no largest prime number (this is the idea of Euclid's original 

proof). Prime numbers are integers with no exact integer divisors except 1 and 

themselves. 

1. To prove: "There is no largest prime number" by contradiction. 

2. Assume: There is a largest prime number, call it p. 

 

3. Consider the number N that is one larger than the product of all of the primes smaller 

than or equal to p. N=1*2*3*5*7*11...*p + 1. Is it prime? 

4. N is at least as big as p+1 and so is larger than p and so, by Step 2, cannot be prime. 

5. On the other hand, N has no prime factors between 1 and p because they would all leave 

a remainder of 1. It has no prime factors larger than p because Step 2 says that there are no 

primes larger than p. So N has no prime factors and therefore must itself be prime (see note 

below). 

We have reached a contradiction (N is not prime by Step 4, and N is prime by Step 5) and 

therefore our original assumption that there is a largest prime must be false. 

Note: The conclusion in Step 5 makes implicit use of one other important theorem: The 

Fundamental Theorem of Arithmetic: Every integer can be uniquely represented as the product 

of primes. So if N had a composite (i.e. non-prime) factor, that factor would itself have prime 

factors which would also be factors of N. 
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Automatic Theorem Proving: 

 

Automatic Theorem Proving (ATP) deals with the development of computer programs that show 

that some statement (the conjecture) is a logical consequence of a set of statements (the axioms 

and hypotheses). ATP systems are used in a wide variety of domains. 

The language in which the conjecture, hypotheses, and axioms (generically known as formulae) 

are written is a logic, often classical 1st order logic, but possibly a non-classical logic and 

possibly a higher order logic. These languages allow a precise formal statement of the necessary 

information, which can then be manipulated by an ATP system. This formality is the underlying 

strength of ATP: there is no ambiguity in the statement of the problem, as is often the case when 

using a natural language such as English. 

 
 

ATP systems are enormously powerful computer programs, capable of solving immensely 

difficult problems. Because of this extreme capability, their application and operation sometimes 

needs to be guided by an expert in the domain of application, in order to solve problems in a 

reasonable amount of time. Thus ATP systems, despite the name, are often used by domain 

experts in an interactive way. The interaction may be at a very detailed level, where the user 

guides the inferences made by the system, or at a much higher level where the user determines 

intermediate lemmas to be proved on the way to the proof of a conjecture. There is often a 

synergetic relationship between ATP system users and the systems themselves: 

 

 The system needs a precise description of the problem written in some logical form, 

 

 the user is forced to think carefully about the problem in order to produce an 

appropriate formulation and hence acquires a deeper understanding of the problem, 

 the system attempts to solve the problem, if successful the proof is a useful output, 

 if unsuccessful the user can provide guidance, or try to prove some intermediate 
result, or examine the formulae to ensure that the problem is correctly described, 

 and so the process iterates. 

 
ATP is thus a technology very suited to situations where a clear thinking domain expert can 

interact with a powerful tool, to solve interesting and deep problems. There are many ATP 

systems readily available for use. 
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